Source code for topomodelx.nn.hypergraph.hypergat

"""HyperGat Layer."""

import torch

from topomodelx.nn.hypergraph.hypergat_layer import HyperGATLayer


[docs] class HyperGAT(torch.nn.Module): """Neural network implementation of Template for hypergraph classification [1]_. Parameters ---------- in_channels : int Dimension of the input features. hidden_channels : int Dimension of the hidden features. n_layers : int, default = 2 Amount of message passing layers. layer_drop : float, default = 0.2 Dropout rate for the hidden features. **kwargs : optional Additional arguments for the inner layers. References ---------- .. [1] Ding, Wang, Li, Li and Huan Liu. EMNLP, 2020. https://aclanthology.org/2020.emnlp-main.399.pdf """ def __init__( self, in_channels, hidden_channels, n_layers=2, layer_drop=0.2, **kwargs, ): super().__init__() self.layers = torch.nn.ModuleList( HyperGATLayer( in_channels=in_channels if i == 0 else hidden_channels, hidden_channels=hidden_channels, **kwargs, ) for i in range(n_layers) ) self.layer_drop = torch.nn.Dropout(layer_drop)
[docs] def forward(self, x_0, incidence_1): """Forward computation through layers, then linear layer, then global max pooling. Parameters ---------- x_0 : torch.Tensor, shape = (n_nodes, channels_nodes) Node features. incidence_1 : torch.Tensor, shape = (n_nodes, n_edges) Boundary matrix of rank 1. Returns ------- x_0 : torch.Tensor Output node features. x_1 : torch.Tensor Output hyperedge features. """ for layer in self.layers: x_0, x_1 = layer.forward(x_0, incidence_1) x_0 = self.layer_drop(x_0) return x_0, x_1