Source code for topomodelx.nn.hypergraph.unigin

"""UniGCNII class."""

import torch

from topomodelx.nn.hypergraph.unigin_layer import UniGINLayer


[docs] class UniGIN(torch.nn.Module): """Neural network implementation of UniGIN [1]_ for hypergraph classification. Parameters ---------- in_channels : int Dimension of the input features. hidden_channels : int Dimension of the hidden features. n_layers : int, default = 2 Amount of message passing layers. input_drop : float, default=0.2 Dropout rate for the input features. layer_drop : float, default=0.2 Dropout rate for the hidden features. eps : float, default=0 Constant in GIN Update equation. train_eps : bool, default=False Whether to make eps a trainable parameter. use_norm : bool, default=False Whether to apply row normalization after every layer. **kwargs : optional Additional arguments for the inner layers. References ---------- .. [1] Huang and Yang. UniGNN: a unified framework for graph and hypergraph neural networks. IJCAI 2021. https://arxiv.org/pdf/2105.00956.pdf """ def __init__( self, in_channels, hidden_channels, n_layers=2, input_drop=0.2, layer_drop=0.2, eps=0, train_eps=False, use_norm=False, **kwargs, ): super().__init__() self.input_drop = torch.nn.Dropout(input_drop) self.layer_drop = torch.nn.Dropout(layer_drop) self.initial_linear_layer = torch.nn.Linear(in_channels, hidden_channels) self.layers = torch.nn.ModuleList( UniGINLayer( in_channels=hidden_channels, eps=eps, train_eps=train_eps, use_norm=use_norm, **kwargs, ) for _ in range(n_layers) )
[docs] def forward(self, x_0, incidence_1): """Forward computation through layers, then linear layer, then global max pooling. Parameters ---------- x_0 : torch.Tensor, shape = (n_nodes, in_channels_node) Edge features. incidence_1 : torch.Tensor, shape = (n_nodes, n_edges) Boundary matrix of rank 1. Returns ------- x_0 : torch.Tensor Output node features. x_1 : torch.Tensor Output hyperedge features. """ x_0 = self.initial_linear_layer(x_0) for layer in self.layers: x_0, x_1 = layer(x_0, incidence_1) x_0 = self.layer_drop(x_0) x_0 = torch.nn.functional.relu(x_0) return x_0, x_1