Source code for topomodelx.nn.hypergraph.unigin_layer
"""Implementation of UniGIN layer from Huang et. al.: UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks."""
import torch
from topomodelx.base.conv import Conv
[docs]
class UniGINLayer(torch.nn.Module):
"""Layer of UniGIN.
Implementation of UniGIN layer proposed in [1]_.
Parameters
----------
in_channels : int
Dimension of input features.
eps : float, default=0.0
Constant in GIN Update equation.
train_eps : bool, default=False
Whether to make eps a trainable parameter.
use_norm : bool, default=False
Whether to apply row normalization after the layer.
**kwargs : optional
Additional arguments for the layer modules.
References
----------
.. [1] Huang and Yang.
UniGNN: a unified framework for graph and hypergraph neural networks.
IJCAI 2021.
https://arxiv.org/pdf/2105.00956.pdf
.. [2] Papillon, Sanborn, Hajij, Miolane.
Equations of topological neural networks (2023).
https://github.com/awesome-tnns/awesome-tnns/
.. [3] Papillon, Sanborn, Hajij, Miolane.
Architectures of topological deep learning: a survey on topological neural networks (2023).
https://arxiv.org/abs/2304.10031
"""
def __init__(
self,
in_channels,
eps: float = 0.0,
train_eps: bool = False,
use_norm: bool = False,
**kwargs,
) -> None:
super().__init__()
self.initial_eps = eps
if train_eps:
self.eps = torch.nn.Parameter(torch.Tensor([eps]))
else:
self.register_buffer("eps", torch.Tensor([eps]))
self.linear = torch.nn.Linear(in_channels, in_channels)
self.use_norm = use_norm
self.vertex2edge = Conv(
in_channels=in_channels,
out_channels=in_channels,
with_linear_transform=False,
)
self.edge2vertex = Conv(
in_channels=in_channels,
out_channels=in_channels,
with_linear_transform=False,
)
[docs]
def forward(self, x_0, incidence_1):
r"""[1]_ initially proposed the forward pass.
Its equations are given in [2]_ and graphically illustrated in [3]_.
The forward pass of this layer is composed of three steps.
1. Every hyper-edge sums up the features of its constituent edges:
.. math::
\begin{align*}
&🟥 \quad m_{y \rightarrow z}^{(0 \rightarrow 1)} = B_1^T \cdot h_y^{t, (0)}\\
&🟧 \quad m_z^{(0 \rightarrow 1)} = \sum_{y \in \mathcal{B}(z)} m_{y \rightarrow z}^{(0 \rightarrow 1)}\\
\end{align*}
2. The message to the nodes is the sum of the messages from the incident hyper-edges.
.. math::
\begin{align*}
&🟥 \quad m_{z \rightarrow x}^{(1 \rightarrow 0)} = B_1 \cdot m_z^{(0 \rightarrow 1)}\\
&🟧 \quad m_{x}^{(1\rightarrow0)} = \sum_{z \in \mathcal{C}(x)} m_{z \rightarrow x}^{(1\rightarrow0)}\\
\end{align*}
3. The node features are then updated using the GIN update equation:
.. math::
\begin{align*}
&🟩 \quad m_x^{(0)} = m_{x}^{(1\rightarrow0)}\\
&🟦 \quad h_x^{t+1,(0)} = \Theta^t \cdot ((1+\eps)\cdot h_x^{t,(0)}+m_x^{(0)})
\end{align*}
Parameters
----------
x_0 : torch.Tensor, shape = (n_nodes, in_channels)
Input features on the nodes of the hypergraph.
incidence_1 : torch.sparse, shape = (n_nodes, n_edges)
Incidence matrix mapping edges to nodes (B_1).
Returns
-------
x_0 : torch.Tensor
Output node features.
x_1 : torch.Tensor
Output hyperedge features.
"""
incidence_1_transpose = incidence_1.to_dense().T.to_sparse()
# First pass fills in features of edges by adding features of constituent nodes
x_1 = self.vertex2edge(x_0, incidence_1_transpose)
# Second pass fills in features of nodes by adding features of the incident edges
m_1_0 = self.edge2vertex(x_1, incidence_1)
# Update node features using GIN update equation
x_0 = self.linear((1 + self.eps) * x_0 + m_1_0)
if self.use_norm:
rownorm = x_0.detach().norm(dim=1, keepdim=True)
scale = rownorm.pow(-1)
scale[torch.isinf(scale)] = 0.0
x_0 = x_0 * scale
return x_0, x_1