CAN#
CAN class.
- class topomodelx.nn.cell.can.CAN(in_channels_0, in_channels_1, out_channels, dropout=0.5, heads=2, concat=True, skip_connection=True, att_activation=None, n_layers=2, att_lift=True, pooling=False, k_pool=0.5, **kwargs)[source]#
CAN (Cell Attention Network) [1] module for graph classification.
- Parameters:
- in_channels_0int
Number of input channels for the node-level input.
- in_channels_1int
Number of input channels for the edge-level input.
- out_channelsint
Number of output channels.
- dropoutfloat, optional
Dropout probability. Default is 0.5.
- headsint, optional
Number of attention heads. Default is 2.
- concatbool, optional
Whether to concatenate the output channels of attention heads. Default is True.
- skip_connectionbool, optional
Whether to use skip connections. Default is True.
- att_activationtorch.nn.Module, optional
Activation function for attention mechanism. Default is torch.nn.LeakyReLU(0.2).
- n_layersint, default=2
Number of CAN layers.
- att_liftbool, default=True
Whether to apply a lift the signal from node-level to edge-level input.
- poolingbool, default=False
Whether to apply pooling operation.
- k_poolfloat, default=0.5
The pooling ratio i.e, the fraction of r-cells to keep after the pooling operation.
- **kwargsoptional
Additional arguments CANLayer.
Methods
add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x_0, x_1, adjacency_0, ...)Forward pass.
get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.get_extra_state
()Returns any extra state to include in the module's state_dict.
get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Moves all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Registers a post hook to be run after module's
load_state_dict
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Adds a parameter to the module.
register_state_dict_pre_hook
(hook)These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)This function is called from
load_state_dict()
to handle any extra state found within the state_dict.share_memory
()See
torch.Tensor.share_memory_()
state_dict
(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
train
([mode])Sets the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Moves all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Giusti, Battiloro, Testa, Di Lorenzo, Sardellitti and Barbarossa. Cell attention networks (2022). Paper: https://arxiv.org/pdf/2209.08179.pdf Repository: lrnzgiusti/can
- forward(x_0, x_1, adjacency_0, down_laplacian_1, up_laplacian_1)[source]#
Forward pass.
- Parameters:
- x_0torch.Tensor, shape = (n_nodes, in_channels_0)
Input features on the nodes (0-cells).
- x_1torch.Tensor, shape = (n_edges, in_channels_1)
Input features on the edges (1-cells).
- adjacency_0torch.Tensor, shape = (n_nodes, n_nodes)
Neighborhood matrix from nodes to nodes.
- down_laplacian_1torch.Tensor, shape = (-, -)
Lower Neighbourhood matrix.
- up_laplacian_1torch.Tensor, shape = (-, -)
Upper neighbourhood matrix.
- Returns:
- torch.Tensor, shape = (num_pooled_edges, heads * out_channels)
Final hidden representations of pooled edges.