CAN#
CAN class.
- class topomodelx.nn.cell.can.CAN(in_channels_0, in_channels_1, out_channels, dropout=0.5, heads=2, concat=True, skip_connection=True, att_activation=None, n_layers=2, att_lift=True, pooling=False, k_pool=0.5, **kwargs)[source]#
 CAN (Cell Attention Network) [1] module for graph classification.
- Parameters:
 - in_channels_0int
 Number of input channels for the node-level input.
- in_channels_1int
 Number of input channels for the edge-level input.
- out_channelsint
 Number of output channels.
- dropoutfloat, optional
 Dropout probability. Default is 0.5.
- headsint, optional
 Number of attention heads. Default is 2.
- concatbool, optional
 Whether to concatenate the output channels of attention heads. Default is True.
- skip_connectionbool, optional
 Whether to use skip connections. Default is True.
- att_activationtorch.nn.Module, optional
 Activation function for attention mechanism. Default is torch.nn.LeakyReLU(0.2).
- n_layersint, default=2
 Number of CAN layers.
- att_liftbool, default=True
 Whether to apply a lift the signal from node-level to edge-level input.
- poolingbool, default=False
 Whether to apply pooling operation.
- k_poolfloat, default=0.5
 The pooling ratio i.e, the fraction of r-cells to keep after the pooling operation.
- **kwargsoptional
 Additional arguments CANLayer.
Methods
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x_0, x_1, adjacency_0, ...)Forward pass.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Giusti, Battiloro, Testa, Di Lorenzo, Sardellitti and Barbarossa. Cell attention networks (2022). Paper: https://arxiv.org/pdf/2209.08179.pdf Repository: lrnzgiusti/can
- forward(x_0, x_1, adjacency_0, down_laplacian_1, up_laplacian_1)[source]#
 Forward pass.
- Parameters:
 - x_0torch.Tensor, shape = (n_nodes, in_channels_0)
 Input features on the nodes (0-cells).
- x_1torch.Tensor, shape = (n_edges, in_channels_1)
 Input features on the edges (1-cells).
- adjacency_0torch.Tensor, shape = (n_nodes, n_nodes)
 Neighborhood matrix from nodes to nodes.
- down_laplacian_1torch.Tensor, shape = (-, -)
 Lower Neighbourhood matrix.
- up_laplacian_1torch.Tensor, shape = (-, -)
 Upper neighbourhood matrix.
- Returns:
 - torch.Tensor, shape = (num_pooled_edges, heads * out_channels)
 Final hidden representations of pooled edges.