Simplicial Attention Network (SAN) Layer.
- class topomodelx.nn.simplicial.san_layer.SANConv(in_channels, out_channels, n_filters, initialization: Literal['xavier_uniform', 'xavier_normal'] = 'xavier_uniform')[source]#
Simplicial Attention Network (SAN) Convolution from [1].
- Parameters:
- in_channelsint
Number of input channels.
- out_channelsint
Number of output channels.
- n_filtersint
Number of simplicial filters.
- initializationLiteral[“xavier_uniform”, “xavier_normal”], default=”xavier_uniform”
Weight initialization method.
Methods
add_module(name, module)Adds a child module to the current module.
aggregate(x_message)Aggregate messages on each target cell.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.attention(x_source[, x_target])Compute attention weights for messages.
bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x_source, neighborhood)Forward pass.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.message(x_source[, x_target])Construct message from source cells to target cells.
modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
reset_parameters()Reset learnable parameters.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.update(x_message_on_target)Update embeddings on each cell (step 4).
xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Giusti, Battiloro, Di Lorenzo, Sardellitti and Barbarossa. Simplicial attention neural networks (2022). https://arxiv.org/abs/2203.07485.
[2]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
- forward(x_source, neighborhood)[source]#
Forward pass.
This implements message passing: - from source cells with input features x_source, - via neighborhood defining where messages can pass, - to target cells, which are the same source cells.
In practice, this will update the features on the target cells [2]_.
\[\begin{split}\begin{align*} &🟥 \quad m_{y \rightarrow \{z\} \rightarrow x}^{u,(1 \rightarrow 2 \rightarrow 1)} = ((L_{\uparrow,1} \odot \operatorname{att}(h_z^{t,(2)}, h_y^{t,(1)}))^u)\_{xy} \cdot h_y^{t,(1)} \cdot \Theta^{t,u}\\ &🟥 \quad m_{y \rightarrow \{z\} \rightarrow x}^{d,(1 \rightarrow 0 \rightarrow 1)} = ((L_{\downarrow,1} \odot \operatorname{att}(h_z^{t,(0)}, h_y^{t,(1)}))^d)\_{xy} \cdot h_y^{t,(1)} \cdot \Theta^{t,d}\\ &🟥 \quad m^{p,(1 \rightarrow 1)}\_{y \rightarrow x} = ((1-wH_1)^p)\_{xy} \cdot h_y^{t,(1)} \cdot \Theta^{t,p}\\ &🟧 \quad m_{x}^{u,(1 \rightarrow 2 \rightarrow 1)} = \sum_{y \in \mathcal{L}\_\uparrow(x)} m_{y \rightarrow \{z\} \rightarrow x}^{u,(1 \rightarrow 2 \rightarrow 1)}\\ &🟧 \quad m_{x}^{d,(1 \rightarrow 0 \rightarrow 1)} = \sum_{y \in \mathcal{L}\downarrow(X)} m_{y \rightarrow \{z\} \rightarrow x}^{d,(1 \rightarrow 0 \rightarrow 1)}\\ &🟧 \quad m^{p,(1 \rightarrow 1)}\_{x} = m^{p,(1 \rightarrow 1)}\_{x \rightarrow x}\\ &🟩 \quad m_x^{(1)} = \sum_{p=1}^P m_x^{p,(1 \rightarrow 1)} + \sum_{u=1}^{U} m_{x}^{u,(1 \rightarrow 2 \rightarrow 1)} + \sum_{d=1}^{D} m_{x}^{d,(1 \rightarrow 0 \rightarrow 1)}\\ &🟦 \quad h_x^{t+1, (1)} = \sigma(m_x^{(1)}) \end{align*}\end{split}\]- Parameters:
- x_sourceTensor, shape = (…, n_source_cells, in_channels)
Input features on source cells. Assumes that all source cells have the same rank r.
- neighborhoodtorch.sparse, shape = (n_target_cells, n_source_cells)
Neighborhood matrix.
- Returns:
- torch.Tensor, shape = (…, n_target_cells, out_channels)
Output features on target cells. Assumes that all target cells have the same rank s.
- class topomodelx.nn.simplicial.san_layer.SANLayer(in_channels, out_channels, n_filters: int = 2)[source]#
Implementation of the Simplicial Attention Network (SAN) Layer proposed in [1]_.
- Parameters:
- in_channelsint
Number of input channels.
- out_channelsint
Number of output channels.
- n_filtersint, default = 2
Approximation order.
Methods
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x, laplacian_up, laplacian_down, ...)Forward pass of the SAN Layer.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
Reset learnable parameters.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
Notes
Architecture proposed for r-simplex (r>0) classification on simplicial complices.
- forward(x, laplacian_up, laplacian_down, projection_mat)[source]#
Forward pass of the SAN Layer.
\[\mathcal N = \{\mathcal N_1, \mathcal N_2,...,\mathcal N_{2p+1}\} = \{A_{\uparrow, r}, A_{\downarrow, r}, A_{\uparrow, r}^2, A_{\downarrow, r}^2,...,A_{\uparrow, r}^p, A_{\downarrow, r}^p, Q_r\},\]\[\begin{split}\begin{align*} &🟥\quad m_{(y \rightarrow x),k}^{(r)} = \alpha_k(h_x^t,h_y^t) = a_k(h_x^{t}, h_y^{t}) \cdot \psi_k^t(h_x^{t})\quad \forall \mathcal N_k \in \mathcal{N}\\ &🟧\quad m_{x,k}^{(r)} = \bigoplus_{y \in \mathcal{N}_k(x)} m^{(r)}_{(y \rightarrow x),k}\\ &🟩\quad m_{x}^{(r)} = \bigotimes_{\mathcal{N}_k\in\mathcal N}m_{x,k}^{(r)}\\ &🟦\quad h_x^{t+1,(r)} = \phi^{t}(h_x^t, m_{x}^{(r)}) \end{align*}\end{split}\]- Parameters:
- xtorch.Tensor, shape = (…, n_cells, in_channels)
Input tensor.
- laplacian_uptorch.Tensor
- laplacian_downtorch.Tensor
The up- and down-laplacians of the simplicial complex.
- projection_mattorch.Tensor
The projection matrix used.
- Returns:
- torch.Tensor, shape = (…, n_cells, out_channels)
Output tensor.