Simplical Complex Autoencoder Layer.
- class topomodelx.nn.simplicial.sca_cmps_layer.SCACMPSLayer(channels_list, complex_dim, att: bool = False)[source]#
Layer of a Simplicial Complex Autoencoder (SCA) using the Coadjacency Message Passing Scheme (CMPS).
Implementation of the SCA layer proposed in [1].
- Parameters:
- channels_listlist[int]
Dimension of features at each dimension.
- complex_dimint
Highest dimension of chains on the input simplicial complexes.
- attbool, default=False
Whether to use attention.
Methods
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x_list, down_lap_list, incidencet_list)Forward pass.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.intra_aggr(x)Based on the use by [1]_.
ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
Reset parameters of each layer.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.weight_func(x)Weight function for intra aggregation layer according to [1]_.
xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
Notes
This is the architecture proposed for complex classification.
References
[1]Hajij, Zamzmi, Papamarkou, Maroulas, Cai. Simplicial complex autoencoder (2022). https://arxiv.org/pdf/2103.04046.pdf
[2]Papillon, Sanborn, Hajij, Miolane. Architectures of topological deep learning: a survey on topological neural networks (2023). https://arxiv.org/abs/2304.10031.
[3]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
- forward(x_list, down_lap_list, incidencet_list)[source]#
Forward pass.
The forward pass was initially proposed in [1]_. Its equations are given in [3]_ and graphically illustrated in [2]_.
Coadjacency message passing scheme:
\[\begin{split}\begin{align*} &🟥 \quad m_{y \rightarrow x}^{(r \rightarrow r'' \rightarrow r)} = M(h_{x}^{t, (r)}, h_{y}^{t, (r)},att(h_{x}^{t, (r)}, h_{y}^{t, (r)}),x,y,{\Theta^t}) \qquad \text{where } r'' < r < r'\\ &🟥 \quad m_{y \rightarrow x}^{(r'' \rightarrow r)} = M(h_{x}^{t, (r)}, h_{y}^{t, (r'')},att(h_{x}^{t, (r)}, h_{y}^{t, (r'')}),x,y,{\Theta^t})\\ &🟧 \quad m_x^{(r \rightarrow r)} = AGG_{y \in \mathcal{L}\_\downarrow(x)} m_{y \rightarrow x}^{(r \rightarrow r)}\\ &🟧 \quad m_x^{(r'' \rightarrow r)} = AGG_{y \in \mathcal{B}(x)} m_{y \rightarrow x}^{(r'' \rightarrow r)}\\ &🟩 \quad m_x^{(r)} = \text{AGG}\_{\mathcal{N}\_k \in \mathcal{N}}(m_x^{(k)})\\ &🟦 \quad h_{x}^{t+1, (r)} = U(h_x^{t, (r)}, m_{x}^{(r)}) \end{align*}\end{split}\]- Parameters:
- x_listlist[torch.Tensor]
List of tensors holding the features of each chain at each level.
- down_lap_listlist[torch.Tensor]
List of down laplacian matrices for skeletons from 1 dimension to the dimension of the simplicial complex.
- incidencet_listlist[torch.Tensor]
List of transpose incidence matrices for skeletons from 1 dimension to the dimension of the simplicial complex.
- Returns:
- list[torch.Tensor]
Output for skeletons of each dimension (the node features are left untouched: x_list[0]).