Simplical Complex Autoencoder Layer.
- class topomodelx.nn.simplicial.sca_cmps_layer.SCACMPSLayer(channels_list, complex_dim, att: bool = False)[source]#
Layer of a Simplicial Complex Autoencoder (SCA) using the Coadjacency Message Passing Scheme (CMPS).
Implementation of the SCA layer proposed in [1].
- Parameters:
- channels_listlist[int]
Dimension of features at each dimension.
- complex_dimint
Highest dimension of chains on the input simplicial complexes.
- attbool, default=False
Whether to use attention.
Methods
add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x_list, down_lap_list, incidencet_list)Forward pass.
get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.get_extra_state
()Returns any extra state to include in the module's state_dict.
get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.half
()Casts all floating point parameters and buffers to
half
datatype.intra_aggr
(x)Based on the use by [1]_.
ipu
([device])Moves all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Registers a post hook to be run after module's
load_state_dict
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Adds a parameter to the module.
register_state_dict_pre_hook
(hook)These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
Reset parameters of each layer.
set_extra_state
(state)This function is called from
load_state_dict()
to handle any extra state found within the state_dict.share_memory
()See
torch.Tensor.share_memory_()
state_dict
(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
train
([mode])Sets the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.weight_func
(x)Weight function for intra aggregation layer according to [1]_.
xpu
([device])Moves all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
__call__
Notes
This is the architecture proposed for complex classification.
References
[1]Hajij, Zamzmi, Papamarkou, Maroulas, Cai. Simplicial complex autoencoder (2022). https://arxiv.org/pdf/2103.04046.pdf
[2]Papillon, Sanborn, Hajij, Miolane. Architectures of topological deep learning: a survey on topological neural networks (2023). https://arxiv.org/abs/2304.10031.
[3]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
- forward(x_list, down_lap_list, incidencet_list)[source]#
Forward pass.
The forward pass was initially proposed in [1]_. Its equations are given in [3]_ and graphically illustrated in [2]_.
Coadjacency message passing scheme:
\[\begin{split}\begin{align*} &🟥 \quad m_{y \rightarrow x}^{(r \rightarrow r'' \rightarrow r)} = M(h_{x}^{t, (r)}, h_{y}^{t, (r)},att(h_{x}^{t, (r)}, h_{y}^{t, (r)}),x,y,{\Theta^t}) \qquad \text{where } r'' < r < r'\\ &🟥 \quad m_{y \rightarrow x}^{(r'' \rightarrow r)} = M(h_{x}^{t, (r)}, h_{y}^{t, (r'')},att(h_{x}^{t, (r)}, h_{y}^{t, (r'')}),x,y,{\Theta^t})\\ &🟧 \quad m_x^{(r \rightarrow r)} = AGG_{y \in \mathcal{L}\_\downarrow(x)} m_{y \rightarrow x}^{(r \rightarrow r)}\\ &🟧 \quad m_x^{(r'' \rightarrow r)} = AGG_{y \in \mathcal{B}(x)} m_{y \rightarrow x}^{(r'' \rightarrow r)}\\ &🟩 \quad m_x^{(r)} = \text{AGG}\_{\mathcal{N}\_k \in \mathcal{N}}(m_x^{(k)})\\ &🟦 \quad h_{x}^{t+1, (r)} = U(h_x^{t, (r)}, m_{x}^{(r)}) \end{align*}\end{split}\]- Parameters:
- x_listlist[torch.Tensor]
List of tensors holding the features of each chain at each level.
- down_lap_listlist[torch.Tensor]
List of down laplacian matrices for skeletons from 1 dimension to the dimension of the simplicial complex.
- incidencet_listlist[torch.Tensor]
List of transpose incidence matrices for skeletons from 1 dimension to the dimension of the simplicial complex.
- Returns:
- list[torch.Tensor]
Output for skeletons of each dimension (the node features are left untouched: x_list[0]).