Hypergat_Layer#

HyperGAT layer.

class topomodelx.nn.hypergraph.hypergat_layer.HyperGATLayer(in_channels, hidden_channels, update_func: str = 'relu', initialization: Literal['xavier_uniform', 'xavier_normal'] = 'xavier_uniform', initialization_gain: float = 1.414, **kwargs)[source]#

Implementation of the HyperGAT layer proposed in [1].

Parameters:
in_channelsint

Dimension of the input features.

hidden_channelsint

Dimension of the output features.

update_funcstr, default = “relu”

Update method to apply to message.

initializationLiteral[“xavier_uniform”, “xavier_normal”], default=”xavier_uniform”

Initialization method.

initialization_gainfloat, default=1.414

Gain for the initialization.

**kwargsoptional

Additional arguments for the layer modules.

Methods

add_module(name, module)

Adds a child module to the current module.

aggregate(x_message)

Aggregate messages on each target cell.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

attention(x_source[, x_target, mechanism])

Compute attention weights for messages, as proposed in [1].

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(x_0, incidence_1)

Forward pass.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

message(x_source[, x_target])

Construct message from source cells to target cells.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

reset_parameters()

Reset parameters.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

update(x_message_on_target)

Update embeddings on each cell (step 4).

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

References

[1]

Ding, Wang, Li, Li and Huan Liu. EMNLP, 2020. https://aclanthology.org/2020.emnlp-main.399.pdf

attention(x_source, x_target=None, mechanism: Literal['node-level', 'edge-level'] = 'node-level')[source]#

Compute attention weights for messages, as proposed in [1].

Parameters:
x_sourcetorch.Tensor, shape = (n_source_cells, in_channels)

Input features on source cells. Assumes that all source cells have the same rank r.

x_targettorch.Tensor, shape = (n_target_cells, in_channels)

Input features on source cells. Assumes that all source cells have the same rank r.

mechanismLiteral[“node-level”, “edge-level”], default = “node-level”

Attention mechanism as proposed in [1]. If set to “node-level”, will compute node-level attention, if set to “edge-level”, will compute edge-level attention (see [1]).

Returns:
torch.Tensor, shape = (n_messages, 1)

Attention weights: one scalar per message between a source and a target cell.

forward(x_0, incidence_1)[source]#

Forward pass.

\[\begin{split}\begin{align*} &🟥 \quad m_{y \rightarrow z}^{(0 \rightarrow 1) } = (B^T_1\odot att(h_{y \in \mathcal{B}(z)}^{t,(0)}))\_{zy} \cdot h^{t,(0)}y \cdot \Theta^{t,(0)}\\ &🟧 \quad m_z^{(1)} = \sigma(\sum_{y \in \mathcal{B}(z)} m_{y \rightarrow z}^{(0 \rightarrow 1)})\\ &🟥 \quad m_{z \rightarrow x}^{(1 \rightarrow 0)} = (B_1 \odot att(h_{z \in \mathcal{C}(x)}^{t,(1)}))\_{xz} \cdot m_{z}^{(1)} \cdot \Theta^{t,(1)}\\ &🟧 \quad m_{x}^{(0)} = \sum_{z \in \mathcal{C}(x)} m_{z \rightarrow x}^{(1\rightarrow0)}\\ &🟩 \quad m_x = m_{x}^{(0)}\\ &🟦 \quad h_x^{t+1, (0)} = \sigma(m_x) \end{align*}\end{split}\]
Parameters:
x_0torch.Tensor

Input features.

incidence_1torch.sparse

Incidence matrix between nodes and hyperedges.

Returns:
x_0torch.Tensor

Output node features.

x_1torch.Tensor

Output hyperedge features.

reset_parameters()[source]#

Reset parameters.

update(x_message_on_target)[source]#

Update embeddings on each cell (step 4).

Parameters:
x_message_on_targettorch.Tensor, shape = (n_target_cells, hidden_channels)

Output features on target cells.

Returns:
torch.Tensor, shape = (n_target_cells, hidden_channels)

Updated output features on target cells.