High Skip Network (HSN) Layer.
- class topomodelx.nn.simplicial.hsn_layer.HSNLayer(channels)[source]#
Layer of a High Skip Network (HSN).
Implementation of the HSN layer proposed in [1].
- Parameters:
- channelsint
Dimension of features on each simplicial cell.
Methods
add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x_0, incidence_1, adjacency_0)Forward pass.
get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.get_extra_state
()Returns any extra state to include in the module's state_dict.
get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Moves all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Registers a post hook to be run after module's
load_state_dict
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Adds a parameter to the module.
register_state_dict_pre_hook
(hook)These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
Reset learnable parameters.
set_extra_state
(state)This function is called from
load_state_dict()
to handle any extra state found within the state_dict.share_memory
()See
torch.Tensor.share_memory_()
state_dict
(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
train
([mode])Sets the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Moves all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
__call__
Notes
This is the architecture proposed for node classification on simplicial complices.
References
[1]Hajij, Ramamurthy, Guzmán-Sáenz, Zamzmi. High skip networks: a higher order generalization of skip connections. Geometrical and topological representation learning workshop at ICLR 2022. https://openreview.net/pdf?id=Sc8glB-k6e9
- forward(x_0, incidence_1, adjacency_0)[source]#
Forward pass.
The forward pass was initially proposed in [1]_. Its equations are given in [2] and graphically illustrated in [3].
\[\begin{split}\begin{align*} &🟥 \quad m_{{y \rightarrow z}}^{(0 \rightarrow 0)} = \sigma ((A_{\uparrow,0})_{xy} \cdot h^{t,(0)}_y \cdot \Theta^{t,(0)1})\\ &🟥 \quad m_{z \rightarrow x}^{(0 \rightarrow 0)} = (A_{\uparrow,0})_{xy} \cdot m_{y \rightarrow z}^{(0 \rightarrow 0)} \cdot \Theta^{t,(0)2}\\ &🟥 \quad m_{{y \rightarrow z}}^{(0 \rightarrow 1)} = \sigma((B_1^T)_{zy} \cdot h_y^{t,(0)} \cdot \Theta^{t,(0 \rightarrow 1)})\\ &🟥 \quad m_{z \rightarrow x)}^{(1 \rightarrow 0)} = (B_1)_{xz} \cdot m_{z \rightarrow x}^{(0 \rightarrow 1)} \cdot \Theta^{t, (1 \rightarrow 0)}\\ &🟧 \quad m_{x}^{(0 \rightarrow 0)} = \sum_{z \in \mathcal{L}_\uparrow(x)} m_{z \rightarrow x}^{(0 \rightarrow 0)}\\ &🟧 \quad m_{x}^{(1 \rightarrow 0)} = \sum_{z \in \mathcal{C}(x)} m_{z \rightarrow x}^{(1 \rightarrow 0)}\\ &🟩 \quad m_x^{(0)} = m_x^{(0 \rightarrow 0)} + m_x^{(1 \rightarrow 0)}\\ &🟦 \quad h_x^{t+1,(0)} = I(m_x^{(0)}) \end{align*}\end{split}\]- Parameters:
- x_0torch.Tensor, shape = (n_nodes, channels)
Input features on the nodes of the simplicial complex.
- incidence_1torch.sparse, shape = (n_nodes, n_edges)
Incidence matrix \(B_1\) mapping edges to nodes.
- adjacency_0torch.sparse, shape = (n_nodes, n_nodes)
Adjacency matrix \(A_0^{\uparrow}\) mapping nodes to nodes via edges.
- Returns:
- torch.Tensor, shape = (n_nodes, channels)
Output features on the nodes of the simplicial complex.
References
[2]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
[3]Papillon, Sanborn, Hajij, Miolane. Architectures of topological deep learning: a survey on topological neural networks (2023). https://arxiv.org/abs/2304.10031.