Dist2Cycle Network Layer.
- class topomodelx.nn.simplicial.dist2cycle_layer.Dist2CycleLayer(channels)[source]#
Layer of Dist2Cycle [1]_.
- Parameters:
- channelsint
Dimension of features.
Methods
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x_e, Linv, adjacency)Forward pass.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
Reset learnable parameters.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
- forward(x_e, Linv, adjacency)[source]#
Forward pass.
\[\begin{split}\begin{align*} &🟥 \quad m^{(1 \rightarrow 1)}\_{y \rightarrow x} = (A \odot (I + L\downarrow)^+{xy}) \cdot h_{y}^{t,(1)}\cdot \Theta^t\\ &🟧 \quad m_x^{(1 \rightarrow 1)} = \sum_{y \in \mathcal{L}\_\downarrow(x)} m_{y \rightarrow x}^{(1 \rightarrow 1)}\\ &🟩 \quad m_x^{(1)} = m^{(1 \rightarrow 1)}_x\\ &🟦 \quad h_x^{t+1,(1)} = \sigma(m_{x}^{(1)}) \end{align*}\end{split}\]- Parameters:
- x_e: torch.Tensor, shape = (n_nodes, channels)
Input features on the edges of the simplicial complex.
- incidence_1torch.sparse, shape = (n_nodes, n_edges)
Incidence matrix \(B_1\) mapping edges to nodes.
- adjacency_0torch.sparse, shape = (n_nodes, n_nodes)
Adjacency matrix \(A_0^{\uparrow}\) mapping nodes to nodes via edges.
- Returns:
- torch.Tensor, shape = (n_nodes, channels)
Output features on the nodes of the simplicial complex.
References
[1]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns