Implementation of UniGIN layer from Huang et. al.: UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks.
- class topomodelx.nn.hypergraph.unigin_layer.UniGINLayer(in_channels, eps: float = 0.0, train_eps: bool = False, use_norm: bool = False, **kwargs)[source]#
Layer of UniGIN.
Implementation of UniGIN layer proposed in [1].
- Parameters:
- in_channelsint
Dimension of input features.
- epsfloat, default=0.0
Constant in GIN Update equation.
- train_epsbool, default=False
Whether to make eps a trainable parameter.
- use_normbool, default=False
Whether to apply row normalization after the layer.
- **kwargsoptional
Additional arguments for the layer modules.
Methods
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x_0, incidence_1)[1]_ initially proposed the forward pass.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Huang and Yang. UniGNN: a unified framework for graph and hypergraph neural networks. IJCAI 2021. https://arxiv.org/pdf/2105.00956.pdf
[2]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
[3]Papillon, Sanborn, Hajij, Miolane. Architectures of topological deep learning: a survey on topological neural networks (2023). https://arxiv.org/abs/2304.10031
- forward(x_0, incidence_1)[source]#
[1]_ initially proposed the forward pass.
Its equations are given in [2]_ and graphically illustrated in [3]_.
The forward pass of this layer is composed of three steps.
Every hyper-edge sums up the features of its constituent edges:
\[\begin{split}\begin{align*} &🟥 \quad m_{y \rightarrow z}^{(0 \rightarrow 1)} = B_1^T \cdot h_y^{t, (0)}\\ &🟧 \quad m_z^{(0 \rightarrow 1)} = \sum_{y \in \mathcal{B}(z)} m_{y \rightarrow z}^{(0 \rightarrow 1)}\\ \end{align*}\end{split}\]The message to the nodes is the sum of the messages from the incident hyper-edges.
\[\begin{split}\begin{align*} &🟥 \quad m_{z \rightarrow x}^{(1 \rightarrow 0)} = B_1 \cdot m_z^{(0 \rightarrow 1)}\\ &🟧 \quad m_{x}^{(1\rightarrow0)} = \sum_{z \in \mathcal{C}(x)} m_{z \rightarrow x}^{(1\rightarrow0)}\\ \end{align*}\end{split}\]The node features are then updated using the GIN update equation:
\[\begin{split}\begin{align*} &🟩 \quad m_x^{(0)} = m_{x}^{(1\rightarrow0)}\\ &🟦 \quad h_x^{t+1,(0)} = \Theta^t \cdot ((1+\eps)\cdot h_x^{t,(0)}+m_x^{(0)}) \end{align*}\end{split}\]- Parameters:
- x_0torch.Tensor, shape = (n_nodes, in_channels)
Input features on the nodes of the hypergraph.
- incidence_1torch.sparse, shape = (n_nodes, n_edges)
Incidence matrix mapping edges to nodes (B_1).
- Returns:
- x_0torch.Tensor
Output node features.
- x_1torch.Tensor
Output hyperedge features.