Unigcnii_Layer#
UniGCNII layer implementation.
- class topomodelx.nn.hypergraph.unigcnii_layer.UniGCNIILayer(in_channels, hidden_channels, alpha: float, beta: float, use_norm=False, **kwargs)[source]#
Implementation of the UniGCNII layer [1].
- Parameters:
- in_channelsint
Dimension of the input features.
- hidden_channelsint
Dimension of the hidden features.
- alphafloat
The alpha parameter determining the importance of the self-loop (theta_2).
- betafloat
The beta parameter determining the importance of the learned matrix (theta_1).
- use_normbool, default=False
Whether to apply row normalization after the layer.
- **kwargsoptional
Additional arguments for the layer modules.
Methods
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x_0, incidence_1[, x_skip])Forward pass of the UniGCNII layer.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
Reset the parameters of the layer.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Huang and Yang. UniGNN: a unified framework for graph and hypergraph neural networks. IJCAI 2021. https://arxiv.org/pdf/2105.00956.pdf
- forward(x_0, incidence_1, x_skip=None)[source]#
Forward pass of the UniGCNII layer.
The forward pass consists of: - two messages, and - a skip connection with a learned update function.
First every hyper-edge sums up the features of its constituent edges:
\[\begin{split}\begin{align*} & 🟥 \quad m_{y \rightarrow z}^{(0 \rightarrow 1)} = (B^T_1)\_{zy} \cdot h^{t,(0)}_y \\ & 🟧 \quad m_z^{(0\rightarrow1)} = \sum_{y \in \mathcal{B}(z)} m_{y \rightarrow z}^{(0 \rightarrow 1)} \end{align*}\end{split}\]Second, the second message is normalized with the node and edge degrees:
\[\begin{split}\begin{align*} & 🟥 \quad m_{z \rightarrow x}^{(1 \rightarrow 0)} = B_1 \cdot m_z^{(0 \rightarrow 1)} \\ & 🟧 \quad m_{x}^{(1\rightarrow0)} = \frac{1}{\sqrt{d_x}}\sum_{z \in \mathcal{C}(x)} \frac{1}{\sqrt{d_z}}m_{z \rightarrow x}^{(1\rightarrow0)} \\ \end{align*}\end{split}\]Third, the computed message is combined with skip connections and a linear transformation using hyperparameters alpha and beta:
\[\begin{split}\begin{align*} & 🟩 \quad m_x^{(0)} = m_x^{(1 \rightarrow 0)} \\ & 🟦 \quad m_x^{(0)} = ((1-\beta)I + \beta W)((1-\alpha)m_x^{(0)} + \alpha \cdot h_x^{t,(0)}) \\ \end{align*}\end{split}\]- Parameters:
- x_0torch.Tensor, shape = (num_nodes, in_channels)
Input features of the nodes of the hypergraph.
- incidence_1torch.Tensor, shape = (num_nodes, num_edges)
Incidence matrix of the hypergraph. It is expected that the incidence matrix contains self-loops for all nodes.
- x_skiptorch.Tensor, shape = (num_nodes, in_channels)
Original node features of the hypergraph used for the skip connections. If not provided, the input to the layer is used as a skip connection.
- Returns:
- x_0torch.Tensor
Output node features.
- x_1torch.Tensor
Output hyperedge features.