Unigcnii_Layer#
UniGCNII layer implementation.
- class topomodelx.nn.hypergraph.unigcnii_layer.UniGCNIILayer(in_channels, hidden_channels, alpha: float, beta: float, use_norm=False, **kwargs)[source]#
Implementation of the UniGCNII layer [1].
- Parameters:
- in_channelsint
Dimension of the input features.
- hidden_channelsint
Dimension of the hidden features.
- alphafloat
The alpha parameter determining the importance of the self-loop (theta_2).
- betafloat
The beta parameter determining the importance of the learned matrix (theta_1).
- use_normbool, default=False
Whether to apply row normalization after the layer.
- **kwargsoptional
Additional arguments for the layer modules.
Methods
add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x_0, incidence_1[, x_skip])Forward pass of the UniGCNII layer.
get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.get_extra_state
()Returns any extra state to include in the module's state_dict.
get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Moves all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Registers a post hook to be run after module's
load_state_dict
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Adds a parameter to the module.
register_state_dict_pre_hook
(hook)These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
Reset the parameters of the layer.
set_extra_state
(state)This function is called from
load_state_dict()
to handle any extra state found within the state_dict.share_memory
()See
torch.Tensor.share_memory_()
state_dict
(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
train
([mode])Sets the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Moves all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Huang and Yang. UniGNN: a unified framework for graph and hypergraph neural networks. IJCAI 2021. https://arxiv.org/pdf/2105.00956.pdf
- forward(x_0, incidence_1, x_skip=None)[source]#
Forward pass of the UniGCNII layer.
The forward pass consists of: - two messages, and - a skip connection with a learned update function.
First every hyper-edge sums up the features of its constituent edges:
\[\begin{split}\begin{align*} & 🟥 \quad m_{y \rightarrow z}^{(0 \rightarrow 1)} = (B^T_1)\_{zy} \cdot h^{t,(0)}_y \\ & 🟧 \quad m_z^{(0\rightarrow1)} = \sum_{y \in \mathcal{B}(z)} m_{y \rightarrow z}^{(0 \rightarrow 1)} \end{align*}\end{split}\]Second, the second message is normalized with the node and edge degrees:
\[\begin{split}\begin{align*} & 🟥 \quad m_{z \rightarrow x}^{(1 \rightarrow 0)} = B_1 \cdot m_z^{(0 \rightarrow 1)} \\ & 🟧 \quad m_{x}^{(1\rightarrow0)} = \frac{1}{\sqrt{d_x}}\sum_{z \in \mathcal{C}(x)} \frac{1}{\sqrt{d_z}}m_{z \rightarrow x}^{(1\rightarrow0)} \\ \end{align*}\end{split}\]Third, the computed message is combined with skip connections and a linear transformation using hyperparameters alpha and beta:
\[\begin{split}\begin{align*} & 🟩 \quad m_x^{(0)} = m_x^{(1 \rightarrow 0)} \\ & 🟦 \quad m_x^{(0)} = ((1-\beta)I + \beta W)((1-\alpha)m_x^{(0)} + \alpha \cdot h_x^{t,(0)}) \\ \end{align*}\end{split}\]- Parameters:
- x_0torch.Tensor, shape = (num_nodes, in_channels)
Input features of the nodes of the hypergraph.
- incidence_1torch.Tensor, shape = (num_nodes, num_edges)
Incidence matrix of the hypergraph. It is expected that the incidence matrix contains self-loops for all nodes.
- x_skiptorch.Tensor, shape = (num_nodes, in_channels)
Original node features of the hypergraph used for the skip connections. If not provided, the input to the layer is used as a skip connection.
- Returns:
- x_0torch.Tensor
Output node features.
- x_1torch.Tensor
Output hyperedge features.