CCXN_Layer#
Implementation of a simplified, convolutional version of CCXN layer from Hajij et. al: Cell Complex Neural Networks.
- class topomodelx.nn.cell.ccxn_layer.CCXNLayer(in_channels_0, in_channels_1, in_channels_2, att: bool = False, **kwargs)[source]#
Layer of a Convolutional Cell Complex Network (CCXN).
Implementation of a simplified version of the CCXN layer proposed in [1].
This layer is composed of two convolutional layers: 1. A convolutional layer sending messages from nodes to nodes. 2. A convolutional layer sending messages from edges to faces. Optionally, attention mechanisms can be used.
- Parameters:
- in_channels_0int
Dimension of input features on nodes (0-cells).
- in_channels_1int
Dimension of input features on edges (1-cells).
- in_channels_2int
Dimension of input features on faces (2-cells).
- attbool, default=False
Whether to use attention.
- **kwargsoptional
Additional arguments for the modules of the CCXN layer.
Methods
add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x_0, x_1, adjacency_0, incidence_2_t)Forward pass.
get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.get_extra_state
()Returns any extra state to include in the module's state_dict.
get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Moves all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Registers a post hook to be run after module's
load_state_dict
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Adds a parameter to the module.
register_state_dict_pre_hook
(hook)These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)This function is called from
load_state_dict()
to handle any extra state found within the state_dict.share_memory
()See
torch.Tensor.share_memory_()
state_dict
(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
train
([mode])Sets the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Moves all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Hajij, Istvan, Zamzmi. Cell complex neural networks. Topological data analysis and beyond workshop at NeurIPS 2020. https://arxiv.org/pdf/2010.00743.pdf
[2]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
[3]Papillon, Sanborn, Hajij, Miolane. Architectures of topological deep learning: a survey on topological neural networks (2023). https://arxiv.org/abs/2304.10031.
- forward(x_0, x_1, adjacency_0, incidence_2_t, x_2=None)[source]#
Forward pass.
The forward pass was initially proposed in [1]_. Its equations are given in [2]_ and graphically illustrated in [3]_.
The forward pass of this layer is composed of two steps.
The convolution from nodes to nodes is given by an adjacency message passing scheme (AMPS):
\[\begin{split}\begin{align*} &🟥 \quad m_{y \rightarrow \{z\} \rightarrow x}^{(0 \rightarrow 1 \rightarrow 0)} = M_{\mathcal{L}_\uparrow}(h_x^{(0)}, h_y^{(0)}, \Theta^{(y \rightarrow x)})\\ &🟧 \quad m_x^{(0 \rightarrow 1 \rightarrow 0)} = \text{AGG}_{y \in \mathcal{L}_\uparrow(x)}(m_{y \rightarrow \{z\} \rightarrow x}^{0 \rightarrow 1 \rightarrow 0})\\ &🟩 \quad m_x^{(0)} = m_x^{(0 \rightarrow 1 \rightarrow 0)}\\ &🟦 \quad h_x^{t+1,(0)} = U^{t}(h_x^{(0)}, m_x^{(0)}) \end{align*}\end{split}\]The convolution from edges to faces is given by cohomology message passing scheme, using the coboundary neighborhood:
\[\begin{split}\begin{align*} &🟥 \quad m_{y \rightarrow x}^{(r' \rightarrow r)} = M^t_{\mathcal{C}}(h_{x}^{t,(r)}, h_y^{t,(r')}, x, y)\\ &🟧 \quad m_x^{(r' \rightarrow r)} = \text{AGG}_{y \in \mathcal{C}(x)} m_{y \rightarrow x}^{(r' \rightarrow r)}\\ &🟩 \quad m_x^{(r)} = m_x^{(r' \rightarrow r)}\\ &🟦 \quad h_{x}^{t+1,(r)} = U^{t,(r)}(h_{x}^{t,(r)}, m_{x}^{(r)}) \end{align*}\end{split}\]- Parameters:
- x_0torch.Tensor, shape = (n_0_cells, channels)
Input features on the nodes of the cell complex.
- x_1torch.Tensor, shape = (n_1_cells, channels)
Input features on the edges of the cell complex.
- adjacency_0torch.sparse, shape = (n_0_cells, n_0_cells)
Neighborhood matrix mapping nodes to nodes (A_0_up).
- incidence_2_ttorch.sparse, shape = (n_2_cells, n_1_cells)
Neighborhood matrix mapping edges to faces (B_2^T).
- x_2torch.Tensor, shape = (n_2_cells, channels)
Input features on the faces of the cell complex. Optional, only required if attention is used between edges and faces.
- Returns:
- torch.Tensor, shape = (1, num_classes)
Output prediction on the entire cell complex.