CCXN_Layer#
Implementation of a simplified, convolutional version of CCXN layer from Hajij et. al: Cell Complex Neural Networks.
- class topomodelx.nn.cell.ccxn_layer.CCXNLayer(in_channels_0, in_channels_1, in_channels_2, att: bool = False, **kwargs)[source]#
Layer of a Convolutional Cell Complex Network (CCXN).
Implementation of a simplified version of the CCXN layer proposed in [1].
This layer is composed of two convolutional layers: 1. A convolutional layer sending messages from nodes to nodes. 2. A convolutional layer sending messages from edges to faces. Optionally, attention mechanisms can be used.
- Parameters:
- in_channels_0int
Dimension of input features on nodes (0-cells).
- in_channels_1int
Dimension of input features on edges (1-cells).
- in_channels_2int
Dimension of input features on faces (2-cells).
- attbool, default=False
Whether to use attention.
- **kwargsoptional
Additional arguments for the modules of the CCXN layer.
Methods
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x_0, x_1, adjacency_0, incidence_2_t)Forward pass.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Hajij, Istvan, Zamzmi. Cell complex neural networks. Topological data analysis and beyond workshop at NeurIPS 2020. https://arxiv.org/pdf/2010.00743.pdf
[2]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
[3]Papillon, Sanborn, Hajij, Miolane. Architectures of topological deep learning: a survey on topological neural networks (2023). https://arxiv.org/abs/2304.10031.
- forward(x_0, x_1, adjacency_0, incidence_2_t, x_2=None)[source]#
Forward pass.
The forward pass was initially proposed in [1]_. Its equations are given in [2]_ and graphically illustrated in [3]_.
The forward pass of this layer is composed of two steps.
The convolution from nodes to nodes is given by an adjacency message passing scheme (AMPS):
\[\begin{split}\begin{align*} &🟥 \quad m_{y \rightarrow \{z\} \rightarrow x}^{(0 \rightarrow 1 \rightarrow 0)} = M_{\mathcal{L}_\uparrow}(h_x^{(0)}, h_y^{(0)}, \Theta^{(y \rightarrow x)})\\ &🟧 \quad m_x^{(0 \rightarrow 1 \rightarrow 0)} = \text{AGG}_{y \in \mathcal{L}_\uparrow(x)}(m_{y \rightarrow \{z\} \rightarrow x}^{0 \rightarrow 1 \rightarrow 0})\\ &🟩 \quad m_x^{(0)} = m_x^{(0 \rightarrow 1 \rightarrow 0)}\\ &🟦 \quad h_x^{t+1,(0)} = U^{t}(h_x^{(0)}, m_x^{(0)}) \end{align*}\end{split}\]The convolution from edges to faces is given by cohomology message passing scheme, using the coboundary neighborhood:
\[\begin{split}\begin{align*} &🟥 \quad m_{y \rightarrow x}^{(r' \rightarrow r)} = M^t_{\mathcal{C}}(h_{x}^{t,(r)}, h_y^{t,(r')}, x, y)\\ &🟧 \quad m_x^{(r' \rightarrow r)} = \text{AGG}_{y \in \mathcal{C}(x)} m_{y \rightarrow x}^{(r' \rightarrow r)}\\ &🟩 \quad m_x^{(r)} = m_x^{(r' \rightarrow r)}\\ &🟦 \quad h_{x}^{t+1,(r)} = U^{t,(r)}(h_{x}^{t,(r)}, m_{x}^{(r)}) \end{align*}\end{split}\]- Parameters:
- x_0torch.Tensor, shape = (n_0_cells, channels)
Input features on the nodes of the cell complex.
- x_1torch.Tensor, shape = (n_1_cells, channels)
Input features on the edges of the cell complex.
- adjacency_0torch.sparse, shape = (n_0_cells, n_0_cells)
Neighborhood matrix mapping nodes to nodes (A_0_up).
- incidence_2_ttorch.sparse, shape = (n_2_cells, n_1_cells)
Neighborhood matrix mapping edges to faces (B_2^T).
- x_2torch.Tensor, shape = (n_2_cells, channels)
Input features on the faces of the cell complex. Optional, only required if attention is used between edges and faces.
- Returns:
- torch.Tensor, shape = (1, num_classes)
Output prediction on the entire cell complex.