Simplicial 2-Complex Convolutional Network Implementation for binary node classification.
- class topomodelx.nn.simplicial.scconv.SCConv(node_channels, edge_channels=None, face_channels=None, n_layers=2)[source]#
Simplicial 2-Complex Convolutional Network Implementation for binary node classification.
- Parameters:
- node_channelsint
Dimension of node (0-cells) features.
- edge_channelsint
Dimension of edge (1-cells) features.
- face_channelsint
Dimension of face (2-cells) features.
- n_layersint
Number of message passing layers.
- n_classesint
Number of classes.
- update_funcstr
Activation function used in aggregation layers.
Methods
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x_0, x_1, x_2, incidence_1, ...)Forward computation.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
- forward(x_0, x_1, x_2, incidence_1, incidence_1_norm, incidence_2, incidence_2_norm, adjacency_up_0_norm, adjacency_up_1_norm, adjacency_down_1_norm, adjacency_down_2_norm)[source]#
Forward computation.
- Parameters:
- x_0: torch.Tensor, shape = (n_nodes, node_channels)
Input features on the nodes of the simplicial complex.
- x_1: torch.Tensor, shape = (n_edges, edge_channels)
Input features on the edges of the simplicial complex.
- x_2: torch.Tensor, shape = (n_faces, face_channels)
Input features on the faces of the simplicial complex.
- incidence_1: torch.Tensor, shape = (n_faces, channels)
Incidence matrix of rank 1 \(B_1\).
- incidence_1_norm: torch.Tensor
Normalized incidence matrix of rank 1 \(B^{~}_1\).
- incidence_2: torch.Tensor
Incidence matrix of rank 2 \(B_2\).
- incidence_2_norm: torch.Tensor
Normalized incidence matrix of rank 2 \(B^{~}_2\).
- adjacency_up_0_norm: torch.Tensor
Normalized upper adjacency matrix of rank 0.
- adjacency_up_1_norm: torch.Tensor
Normalized upper adjacency matrix of rank 1.
- adjacency_down_1_norm: torch.Tensor
Normalized down adjacency matrix of rank 1.
- adjacency_down_2_norm: torch.Tensor
Normalized down adjacency matrix of rank 2.
- Returns:
- torch.Tensor, shape = (1)
Label assigned to whole complex.