Neural network implementation of classification using SCoNe.
- class topomodelx.nn.simplicial.scone.SCoNe(in_channels: int, hidden_channels: int, n_layers: int)[source]#
Neural network implementation of classification using SCoNe.
Methods
add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x, incidence_1, incidence_2)Forward pass through the network.
get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.get_extra_state
()Returns any extra state to include in the module's state_dict.
get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Moves all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Registers a post hook to be run after module's
load_state_dict
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Adds a parameter to the module.
register_state_dict_pre_hook
(hook)These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)This function is called from
load_state_dict()
to handle any extra state found within the state_dict.share_memory
()See
torch.Tensor.share_memory_()
state_dict
(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
train
([mode])Sets the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Moves all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
__call__
- class topomodelx.nn.simplicial.scone.TrajectoriesDataset(sc: SimplicialComplex, trajectories: list[list[int]])[source]#
Create a dataset of trajectories.
Methods
vectorize_path
(path)Vectorize a path of nodes into a vector representation of the trajectory.
- topomodelx.nn.simplicial.scone.generate_complex(N: int = 100, *, rng: Generator | None = None) tuple[SimplicialComplex, ndarray] [source]#
Generate a simplicial complex as described.
- Generate a simplicial complex of dimension 2 as follows:
Uniformly sample N random points form the unit square and build the Delaunay triangulation.
Delete triangles contained in some pre-defined disks.
- Parameters:
- Nint
Number of vertices in the simplicial complex.
- rngnp.random.Generator, optional
The random number generator to use, defaults to NumPy’s default generator.