Simplex Convolutional Network (SCN) Layer [Yang et al. LoG 2022].
- class topomodelx.nn.simplicial.scn2_layer.SCN2Layer(in_channels_0, in_channels_1, in_channels_2)[source]#
Layer of a Simplex Convolutional Network (SCN).
Implementation of the SCN layer proposed in [1] for a simplicial complex of rank 2, that is for 0-cells (nodes), 1-cells (edges) and 2-cells (faces) only.
This layer corresponds to the rightmost tensor diagram labeled Yang22c in Figure 11 of [PSHM23].
- Parameters:
- in_channels_0int
Dimension of input features on nodes (0-cells).
- in_channels_1int
Dimension of input features on edges (1-cells).
- in_channels_2int
Dimension of input features on faces (2-cells).
Methods
add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x_0, x_1, x_2, laplacian_0, ...)get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.get_extra_state
()Returns any extra state to include in the module's state_dict.
get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Moves all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Registers a post hook to be run after module's
load_state_dict
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Adds a parameter to the module.
register_state_dict_pre_hook
(hook)These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
Reset learnable parameters.
set_extra_state
(state)This function is called from
load_state_dict()
to handle any extra state found within the state_dict.share_memory
()See
torch.Tensor.share_memory_()
state_dict
(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
train
([mode])Sets the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Moves all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
__call__
See also
topomodelx.nn.simplicial.sccn_layer.SCCNLayer
SCCN layer Simplicial Complex Convolutional Network (SCCN) layer proposed in [1]. The difference between SCCN and SCN is that: - SCN passes messages between cells of the same rank, - SCCN passes messages between cells of the same ranks, one rank above and one rank below.
Notes
This architecture is proposed for simplicial complex classification.
References
[1] (1,2)Yang, Sala and Bogdan. Efficient representation learning for higher-order data with simplicial complexes (2022). https://proceedings.mlr.press/v198/yang22a.html.
[2]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
[3]Papillon, Sanborn, Hajij, Miolane. Architectures of topological deep learning: a survey on topological neural networks (2023). https://arxiv.org/abs/2304.10031.
- forward(x_0, x_1, x_2, laplacian_0, laplacian_1, laplacian_2)[source]#
Forward pass (see [2]_ and [3]_).
\[\begin{split}\begin{align*} &🟥 \quad m^{(r \rightarrow r)}\_{y \rightarrow x} = (2I + H_r)\_{{xy}} \cdot h_{y}^{t,(1)}\cdot \Theta^t\\ &🟧 \quad m_x^{(1 \rightarrow 1)} = \sum_{y \in (\mathcal{L}\_\downarrow+\mathcal{L}\_\uparrow)(x)} m_{y \rightarrow x}^{(1 \rightarrow 1)}\\ &🟩 \quad m_x^{(1)} = m^{(1 \rightarrow 1)}_x\\ &🟦 \quad h_x^{t+1,(1)} = \sigma(m_{x}^{(1)}) \end{align*}\end{split}\]- Parameters:
- x_0torch.Tensor, shape = (n_nodes, node_features)
Input features on the nodes of the simplicial complex.
- x_1torch.Tensor, shape = (n_edges, edge_features)
Input features on the edges of the simplicial complex.
- x_2torch.Tensor, shape = (n_faces, face_features)
Input features on the faces of the simplicial complex.
- laplacian_0torch.sparse, shape = (n_nodes, n_nodes)
Normalized Hodge Laplacian matrix = L_upper + L_lower.
- laplacian_1torch.sparse, shape = (n_edges, n_edges)
Normalized Hodge Laplacian matrix.
- laplacian_2torch.sparse, shape = (n_faces, n_faces)
Normalized Hodge Laplacian matrix.
- Returns:
- torch.Tensor, shape = (n_nodes, channels)
Output features on the nodes of the simplicial complex.