HMPNN_Layer#

HMPNN (Hypergraph Message Passing Neural Network) Layer introduced in Heydari et Livi 2022.

class topomodelx.nn.hypergraph.hmpnn_layer.HMPNNLayer(in_channels, node_to_hyperedge_messaging_func=None, hyperedge_to_node_messaging_func=None, adjacency_dropout: float = 0.7, aggr_func: Literal['sum', 'mean', 'add'] = 'sum', updating_dropout: float = 0.5, updating_func=None, **kwargs)[source]#

HMPNN Layer [1].

The layer is a hypergraph comprised of nodes and hyperedges that makes their new reprsentation using the input representation and the messages passed between them. In this layer, the message passed from a node to its neighboring hyperedges is only a function of its input representation, but the message from a hyperedge to its neighboring nodes is also a function of the messages recieved from them beforehand. This way, a node could have a more explicit effect on its upper adjacent neighbors i.e. the nodes that it share a hyperedge with.

\[\begin{split}\begin{align*} &šŸŸ„ \quad m_{{y \rightarrow z}}^{(0 \rightarrow 1)} = M_\mathcal{C} (h_y^{t,(0)}, h_z^{t, (1)})\\ &šŸŸ§ \quad m_{z'}^{(0 \rightarrow 1)} = AGG'{y \in \mathcal{B}(z)} m_{y \rightarrow z}^{(0\rightarrow1)}\\ &šŸŸ§ \quad m_{z}^{(0 \rightarrow 1)} = AGG_{y \in \mathcal{B}(z)} m_{y \rightarrow z}^{(0 \rightarrow 1)}\\ &šŸŸ„ \quad m_{z \rightarrow x}^{(1 \rightarrow0)} = M_\mathcal{B}(h_z^{t,(1)}, m_z^{(1)})\\ &šŸŸ§ \quad m_x^{(1 \rightarrow0)} = AGG_{z \in \mathcal{C}(x)} m_{z \rightarrow x}^{(1 \rightarrow0)}\\ &šŸŸ© \quad m_x^{(0)} = m_x^{(1 \rightarrow 0)}\\ &šŸŸ© \quad m_z^{(1)} = m_{z'}^{(0 \rightarrow 1)}\\ &šŸŸ¦ \quad h_x^{t+1, (0)} = U^{(0)}(h_x^{t,(0)}, m_x^{(0)})\\ &šŸŸ¦ \quad h_z^{t+1,(1)} = U^{(1)}(h_z^{t,(1)}, m_{z}^{(1)}) \end{align*}\end{split}\]
Parameters:
in_channelsint

Dimension of input features.

node_to_hyperedge_messaging_funcNone

Node messaging function as a callable or nn.Module object. If not given, a linear plus sigmoid function is used, according to the paper.

hyperedge_to_node_messaging_funcNone

Hyperedge messaging function as a callable or nn.Module object. It gets hyperedge input features and aggregated messages of nodes as input and returns hyperedge messages. If not given, two inputs are concatenated and a linear layer reducing back to in_channels plus sigmoid is applied, according to the paper.

adjacency_dropoutint, default = 0.7

Adjacency dropout rate.

aggr_funcLiteral[ā€œsumā€, ā€œmeanā€, ā€œaddā€], default=ā€sumā€

Message aggregation function.

updating_dropoutint, default = 0.5

Regular dropout rate applied to node and hyperedge features.

updating_funccallable or None, default = None

The final function or nn.Module object to be called on node and hyperedge features to retrieve their new representation. If not given, a linear layer is applied, received message is added and sigmoid is called.

**kwargsoptional

Additional arguments for the layer modules.

Methods

add_module(name,Ā module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

apply_regular_dropout(x)

Apply regular dropout according to the paper.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(x_0,Ā x_1,Ā incidence_1)

Forward computation.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[,Ā strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix,Ā recurse,Ā ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo,Ā prefix,Ā remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix,Ā recurse,Ā ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name,Ā tensor[,Ā persistent])

Adds a buffer to the module.

register_forward_hook(hook,Ā *[,Ā prepend,Ā ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook,Ā *[,Ā ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[,Ā prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[,Ā prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name,Ā module)

Alias for add_module().

register_parameter(name,Ā param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[,Ā destination,Ā prefix,Ā ...])

Returns a dictionary containing references to the whole state of the module.

to(*args,Ā **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*,Ā device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

References

[1]

Heydari S, Livi L. Message passing neural networks for hypergraphs. ICANN 2022. https://arxiv.org/abs/2203.16995

apply_regular_dropout(x)[source]#

Apply regular dropout according to the paper.

Unmasked features in a vector are scaled by d+k / d in which k is the number of masked features in the vector and d is the total number of features.

Parameters:
xtorch.Tensor

Input features.

Returns:
torch.Tensor

Output features.

forward(x_0, x_1, incidence_1)[source]#

Forward computation.

Parameters:
x_0torch.Tensor, shape = (n_nodes, node_in_channels)

Input features of the nodes.

x_1torch.Tensor, shape = (n_edges, hyperedge_in_channels)

Input features of the hyperedges.

incidence_1torch.sparse.Tensor, shape = (n_nodes, n_edges)

Incidence matrix mapping hyperedges to nodes (B_1).

Returns:
x_0torch.Tensor, shape = (n_nodes, node_in_channels)

Output features of the nodes.

x_1torch.Tensor, shape = (n_edges, hyperedge_in_channels)

Output features of the hyperedges.