HMPNN_Layer#
HMPNN (Hypergraph Message Passing Neural Network) Layer introduced in Heydari et Livi 2022.
- class topomodelx.nn.hypergraph.hmpnn_layer.HMPNNLayer(in_channels, node_to_hyperedge_messaging_func=None, hyperedge_to_node_messaging_func=None, adjacency_dropout: float = 0.7, aggr_func: Literal['sum', 'mean', 'add'] = 'sum', updating_dropout: float = 0.5, updating_func=None, **kwargs)[source]#
HMPNN Layer [1].
The layer is a hypergraph comprised of nodes and hyperedges that makes their new reprsentation using the input representation and the messages passed between them. In this layer, the message passed from a node to its neighboring hyperedges is only a function of its input representation, but the message from a hyperedge to its neighboring nodes is also a function of the messages recieved from them beforehand. This way, a node could have a more explicit effect on its upper adjacent neighbors i.e. the nodes that it share a hyperedge with.
\[\begin{split}\begin{align*} &š„ \quad m_{{y \rightarrow z}}^{(0 \rightarrow 1)} = M_\mathcal{C} (h_y^{t,(0)}, h_z^{t, (1)})\\ &š§ \quad m_{z'}^{(0 \rightarrow 1)} = AGG'{y \in \mathcal{B}(z)} m_{y \rightarrow z}^{(0\rightarrow1)}\\ &š§ \quad m_{z}^{(0 \rightarrow 1)} = AGG_{y \in \mathcal{B}(z)} m_{y \rightarrow z}^{(0 \rightarrow 1)}\\ &š„ \quad m_{z \rightarrow x}^{(1 \rightarrow0)} = M_\mathcal{B}(h_z^{t,(1)}, m_z^{(1)})\\ &š§ \quad m_x^{(1 \rightarrow0)} = AGG_{z \in \mathcal{C}(x)} m_{z \rightarrow x}^{(1 \rightarrow0)}\\ &š© \quad m_x^{(0)} = m_x^{(1 \rightarrow 0)}\\ &š© \quad m_z^{(1)} = m_{z'}^{(0 \rightarrow 1)}\\ &š¦ \quad h_x^{t+1, (0)} = U^{(0)}(h_x^{t,(0)}, m_x^{(0)})\\ &š¦ \quad h_z^{t+1,(1)} = U^{(1)}(h_z^{t,(1)}, m_{z}^{(1)}) \end{align*}\end{split}\]- Parameters:
- in_channelsint
Dimension of input features.
- node_to_hyperedge_messaging_funcNone
Node messaging function as a callable or nn.Module object. If not given, a linear plus sigmoid function is used, according to the paper.
- hyperedge_to_node_messaging_funcNone
Hyperedge messaging function as a callable or nn.Module object. It gets hyperedge input features and aggregated messages of nodes as input and returns hyperedge messages. If not given, two inputs are concatenated and a linear layer reducing back to in_channels plus sigmoid is applied, according to the paper.
- adjacency_dropoutint, default = 0.7
Adjacency dropout rate.
- aggr_funcLiteral[āsumā, āmeanā, āaddā], default=āsumā
Message aggregation function.
- updating_dropoutint, default = 0.5
Regular dropout rate applied to node and hyperedge features.
- updating_funccallable or None, default = None
The final function or nn.Module object to be called on node and hyperedge features to retrieve their new representation. If not given, a linear layer is applied, received message is added and sigmoid is called.
- **kwargsoptional
Additional arguments for the layer modules.
Methods
add_module
(name,Ā module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.Apply regular dropout according to the paper.
bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x_0,Ā x_1,Ā incidence_1)Forward computation.
get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.get_extra_state
()Returns any extra state to include in the module's state_dict.
get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Moves all model parameters and buffers to the IPU.
load_state_dict
(state_dict[,Ā strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix,Ā recurse,Ā ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo,Ā prefix,Ā remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix,Ā recurse,Ā ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name,Ā tensor[,Ā persistent])Adds a buffer to the module.
register_forward_hook
(hook,Ā *[,Ā prepend,Ā ...])Registers a forward hook on the module.
register_forward_pre_hook
(hook,Ā *[,Ā ...])Registers a forward pre-hook on the module.
register_full_backward_hook
(hook[,Ā prepend])Registers a backward hook on the module.
register_full_backward_pre_hook
(hook[,Ā prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Registers a post hook to be run after module's
load_state_dict
is called.register_module
(name,Ā module)Alias for
add_module()
.register_parameter
(name,Ā param)Adds a parameter to the module.
register_state_dict_pre_hook
(hook)These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)This function is called from
load_state_dict()
to handle any extra state found within the state_dict.share_memory
()See
torch.Tensor.share_memory_()
state_dict
(*args[,Ā destination,Ā prefix,Ā ...])Returns a dictionary containing references to the whole state of the module.
to
(*args,Ā **kwargs)Moves and/or casts the parameters and buffers.
to_empty
(*,Ā device)Moves the parameters and buffers to the specified device without copying storage.
train
([mode])Sets the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Moves all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Heydari S, Livi L. Message passing neural networks for hypergraphs. ICANN 2022. https://arxiv.org/abs/2203.16995
- apply_regular_dropout(x)[source]#
Apply regular dropout according to the paper.
Unmasked features in a vector are scaled by d+k / d in which k is the number of masked features in the vector and d is the total number of features.
- Parameters:
- xtorch.Tensor
Input features.
- Returns:
- torch.Tensor
Output features.
- forward(x_0, x_1, incidence_1)[source]#
Forward computation.
- Parameters:
- x_0torch.Tensor, shape = (n_nodes, node_in_channels)
Input features of the nodes.
- x_1torch.Tensor, shape = (n_edges, hyperedge_in_channels)
Input features of the hyperedges.
- incidence_1torch.sparse.Tensor, shape = (n_nodes, n_edges)
Incidence matrix mapping hyperedges to nodes (B_1).
- Returns:
- x_0torch.Tensor, shape = (n_nodes, node_in_channels)
Output features of the nodes.
- x_1torch.Tensor, shape = (n_edges, hyperedge_in_channels)
Output features of the hyperedges.