Simplicial Complex Convolutional Neural Network Layer.
- class topomodelx.nn.simplicial.sccnn_layer.SCCNNLayer(in_channels, out_channels, conv_order, sc_order, aggr_norm: bool = False, update_func=None, initialization: str = 'xavier_normal')[source]#
Layer of a Simplicial Complex Convolutional Neural Network.
- Parameters:
- in_channelstuple of int
Dimensions of input features on nodes, edges, and triangles.
- out_channelstuple of int
Dimensions of output features on nodes, edges, and triangles.
- conv_orderint
Convolution order of the simplicial filters. To avoid too many parameters, we consider them to be the same.
- sc_orderint
SC order.
- aggr_normbool, default = False
Whether to normalize the aggregated message by the neighborhood size.
- update_funcstr, default = None
Activation function used in aggregation layers.
- initializationstr, default = “xavier_normal”
Weight initialization method.
Methods
add_module(name, module)Adds a child module to the current module.
aggr_norm_func(conv_operator, x)Perform aggregation normalization.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
chebyshev_conv(conv_operator, conv_order, x)Perform Chebyshev convolution.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x_all, laplacian_all, incidence_all)Forward computation (see [1]_).
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
reset_parameters([gain])Reset learnable parameters.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.update(x)Update embeddings on each cell (step 4).
xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
Examples
Here we provide an example of pseudocode for SCCNN layer in an SC of order two input X_0: [n_nodes, in_channels] input X_1: [n_edges, in_channels] input X_2: [n_faces, in_channels]
graph Laplacian L_0: [n_nodes, n_nodes] 1-Lap_down L_1_down: [n_edges, n_edges] 1-Lap_up L_1_up: [n_edges, n_edges] 2-Lap L_2: [n_faces,n_faces] 1-incidence B_1: [n_nodes, n_edges] 2-incidence B_2: [n_edges, n_faces]
conv_order: int, e.g., 2
output Y_0: [n_nodes, out_channels] output Y_1: [n_edges, out_channels] output Y_2: [n_faces, out_channels]
SCCNN layer looks like:
Y_0 = torch.einsum( concat(
), weight_0) Y_1 = torch.einsum( concat(
B_1.T@X_1, B_1.T@L_0@X_0, B_1.T@L_0@L_0@X_0 || X_1, L_1_down@X_1, L_1_down@L_1_down@X_1,
L_1_up@X_1, L_1_up@L_1_up@X_1 ||
B_2@X_2, B_2@L_2@X_2, B_2@L_2@L_2@X_2
), weight_1) Y_2 = torch.einsum( concat(
), weight_2)
- where
weight_0, weight_2, weight_2 are the trainable parameters
- weight_0: [out_channels, in_channels, total_order_0]
total_order_0 = 1+conv_order + 1+conv_order
- weight_1: [out_channels, in_channels, total_order_1]
- total_order_1 = 1+conv_order +
1+conv_order+conv_order + 1+conv_order
- weight_2: [out_channels, in_channels, total_order_2]
total_order_2 = 1+conv_order + 1+conv_order
- to implement Lap_down@Lap_down@X, we consider chebyshev method
to avoid matrix@matrix computation
- chebyshev_conv(conv_operator, conv_order, x)[source]#
Perform Chebyshev convolution.
- Parameters:
- conv_operatortorch.sparse, shape = (n_simplices,n_simplices)
Convolution operator e.g., the adjacency matrix, or the Hodge Laplacians.
- conv_orderint
The order of the convolution.
- xtorch.Tensor, shape = (n_simplices,num_channels)
Feature tensor.
- Returns:
- torch.Tensor
Output tensor. x[:, :, k] = (conv_operator@….@conv_operator) @ x.
- forward(x_all, laplacian_all, incidence_all)[source]#
Forward computation (see [1]_).
\[\begin{split}\begin{align*} &🟥 \quad m_{y \rightarrow z}^{(0\rightarrow1)} = B_1^T \cdot h_y^{t,(0)} \cdot \Theta^{t,(0 \rightarrow 1)}\\ &🟧 $\quad m_{z}^{(0\rightarrow1)} = \frac{1}\sum_{y \in \mathcal{B}(z)} m_{y \rightarrow z}^{(0\rightarrow1)} \qquad \text{where} \sum \text{represents a mean.}\\ &🟥 $\quad m_{z \rightarrow x}^{(1 \rightarrow 0)} = B_1\odot att(m_{z \in \mathcal{C}(x)}^{(0\rightarrow1)}, h_x^{t,(0)}) \cdot m_z^{(0\rightarrow1)} \cdot \Theta^{t,(1 \rightarrow 0)}\\ &🟧 $\quad m_x^{(1\rightarrow0)} = \sum_{z \in \mathcal{C}(x)} m_{z \rightarrow x}^{(1\rightarrow0)} \qquad \text{where} \sum \text{represents a mean.}\\ &🟩 \quad m_x^{(0)} = m_x^{(1\rightarrow0)}\\ &🟦 \quad h_x^{t+1, (0)} = \Theta^{t, \text{update}} \cdot (h_x^{t,(0)}||m_x^{(0)})+b^{t, \text{update}}\\ \end{align*}\end{split}\]- Parameters:
- x_alltuple of tensors, shape = (x_0,x_1,x_2)
Tuple of input feature tensors:
x_0: torch.Tensor, shape = (n_nodes,in_channels_0),
x_1: torch.Tensor, shape = (n_edges,in_channels_1),
x_2: torch.Tensor, shape = (n_triangles,in_channels_2).
- laplacian_all: tuple of tensors, shape = (laplacian_0,laplacian_down_1,laplacian_up_1,laplacian_2)
Tuple of laplacian tensors:
laplacian_0: torch.sparse, graph Laplacian,
laplacian_down_1: torch.sparse, the 1-Hodge laplacian (lower part),
laplacian_up_1: torch.sparse, the 1-hodge laplacian (upper part),
laplacian_2: torch.sparse, the 2-hodge laplacian.
- incidence_alltuple of tensors, shape = (b1,b2)
Tuple of incidence tensors:
b1: torch.sparse, shape = (n_nodes,n_edges), node-to-edge incidence matrix,
b2: torch.sparse, shape = (n_edges,n_triangles), edge-to-face incidence matrix.
- Returns:
- y_0torch.Tensor
Output features on nodes.
- y_1torch.Tensor
Output features on edges.
- y_2torch.Tensor
Output features on triangles.