Hypersage_Layer#
HyperSAGE layer.
- class topomodelx.nn.hypergraph.hypersage_layer.GeneralizedMean(power: int = 2, **kwargs)[source]#
Generalized mean aggregation layer.
- Parameters:
- powerint, default=2
Power for the generalized mean.
- **kwargskeyword arguments, optional
Arguments for the base aggregation layer.
Methods
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x)Forward pass.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.update(inputs)Update (Step 4).
xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
- class topomodelx.nn.hypergraph.hypersage_layer.HyperSAGELayer(in_channels: int, out_channels: int, alpha: int = -1, aggr_func_intra: Aggregation | None = None, aggr_func_inter: Aggregation | None = None, update_func: Literal['relu', 'sigmoid'] = 'relu', initialization: Literal['uniform', 'xavier_uniform', 'xavier_normal'] = 'uniform', device: str = 'cpu', **kwargs)[source]#
Implementation of the HyperSAGE layer proposed in [1].
- Parameters:
- in_channelsint
Dimension of the input features.
- out_channelsint
Dimension of the output features.
- alphaint, default=-1
Max number of nodes in a neighborhood to consider. If -1 it considers all the nodes.
- aggr_func_intracallable, default=GeneralizedMean(p=2)
Aggregation function. Default is GeneralizedMean(p=2).
- aggr_func_intercallable, default=GeneralizedMean(p=2)
Aggregation function. Default is GeneralizedMean(p=2).
- update_funcLiteral[“relu”, “sigmoid”], default=”relu”
Update method to apply to message.
- initializationLiteral[“uniform”, “xavier_uniform”, “xavier_normal”], default=”uniform”
Initialization method.
- devicestr, default=”cpu”
Device name to train layer on.
- **kwargsoptional
Additional arguments for the layer modules.
Methods
add_module(name, module)Adds a child module to the current module.
aggregate(x_messages[, mode])Aggregate messages on each target cell.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.attention(x_source[, x_target])Compute attention weights for messages.
bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x, incidence)get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.message(x_source[, x_target])Construct message from source cells to target cells.
modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
reset_parameters()Reset learnable parameters.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.update(x_message_on_target)Update embeddings on each node (step 4).
xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Arya, Gupta, Rudinac and Worring. HyperSAGE: Generalizing inductive representation learning on hypergraphs (2020). https://arxiv.org/abs/2010.04558
[2]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
[3]Papillon, Sanborn, Hajij, Miolane. Architectures of topological deep learning: a survey on topological neural networks (2023). https://arxiv.org/abs/2304.10031
- aggregate(x_messages: Tensor, mode: str = 'intra')[source]#
Aggregate messages on each target cell.
A target cell receives messages from several source cells. This function aggregates these messages into a single output feature per target cell.
This function corresponds to either intra- or inter-aggregation.
- Parameters:
- x_messagesTensor, shape = (…, n_messages, out_channels)
Features associated with each message. One message is sent from a source cell to a target cell.
- modestr, default = “inter”
The mode on which aggregation to compute. If set to “inter”, will compute inter-aggregation, if set to “intra”, will compute intra-aggregation (see [1]).
- Returns:
- Tensor, shape = (…, n_target_cells, out_channels)
Output features on target cells. Each target cell aggregates messages from several source cells. Assumes that all target cells have the same rank s.
- forward(x: Tensor, incidence: Tensor)[source]#
-
\[\begin{split}\begin{align*} &🟥 \quad m_{y \rightarrow z}^{(0 \rightarrow 1)} = (B_1)^T_{zy} \cdot w_y \cdot (h_y^{(0)})^p\\ &🟥 \quad m_z^{(0 \rightarrow 1)} = \left(\frac{1}{\vert \mathcal{B}(z)\vert}\sum_{y \in \mathcal{B}(z)} m_{y \rightarrow z}^{(0 \rightarrow 1)}\right)^{\frac{1}{p}}\\ &🟥 \quad m_{z \rightarrow x}^{(1 \rightarrow 0)} = (B_1)_{xz} \cdot w_z \cdot (m_z^{(0 \rightarrow 1)})^p\\ &🟧 \quad m_x^{(1,0)} = \left(\frac{1}{\vert \mathcal{C}(x) \vert}\sum_{z \in \mathcal{C}(x)} m_{z \rightarrow x}^{(1 \rightarrow 0)}\right)^{\frac{1}{p}}\\ &🟩 \quad m_x^{(0)} = m_x^{(1 \rightarrow 0)}\\ &🟦 \quad h_x^{t+1, (0)} = \sigma \left(\frac{m_x^{(0)} + h_x^{t,(0)}}{\lvert m_x^{(0)} + h_x^{t,(0)}\rvert} \cdot \Theta^t\right) \end{align*}\end{split}\]
- Parameters:
- xtorch.Tensor
Input features.
- incidencetorch.Tensor
Incidence matrix between node/hyperedges.
- Returns:
- torch.Tensor
Output features.
- update(x_message_on_target: Tensor) Tensor[source]#
Update embeddings on each node (step 4).
- Parameters:
- x_message_on_targettorch.Tensor, shape = (n_target_nodes, out_channels)
Output features on target nodes.
- Returns:
- torch.Tensor, shape = (n_target_nodes, out_channels)
Updated output features on target nodes.