AllSet_Layer#

AllSet Layer Module.

class topomodelx.nn.hypergraph.allset_layer.AllSetBlock(in_channels, hidden_channels, dropout: float = 0.2, mlp_num_layers: int = 2, mlp_activation=<class 'torch.nn.modules.activation.ReLU'>, mlp_dropout: float = 0.0, mlp_norm=None, **kwargs)[source]#

AllSet Block Module.

A module for AllSet block in a bipartite graph.

Parameters:
in_channelsint

Dimension of the input features.

hidden_channelsint

Dimension of the hidden features.

dropoutfloat, default=0.2

Dropout probability.

mlp_num_layersint, default=2

Number of layers in the MLP.

mlp_activationcallable or None, optional

Activation function in the MLP.

mlp_dropoutfloat, optional

Dropout probability in the MLP.

mlp_normcallable or None, optional

Type of layer normalization in the MLP.

**kwargsoptional

Additional arguments for the block modules.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(x_0, incidence_1)

Forward computation.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

reset_parameters()

Reset learnable parameters.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

forward(x_0, incidence_1)[source]#

Forward computation.

Parameters:
x_0torch.Tensor

Input node features.

incidence_1torch.sparse

Incidence matrix between node/hyperedges.

Returns:
torch.Tensor

Output features.

reset_parameters() None[source]#

Reset learnable parameters.

class topomodelx.nn.hypergraph.allset_layer.AllSetLayer(in_channels, hidden_channels, dropout: float = 0.2, mlp_num_layers: int = 2, mlp_activation=<class 'torch.nn.modules.activation.ReLU'>, mlp_dropout: float = 0.0, mlp_norm=None, **kwargs)[source]#

AllSet Layer Module [1].

A module for AllSet layer in a bipartite graph.

Parameters:
in_channelsint

Dimension of the input features.

hidden_channelsint

Dimension of the hidden features.

dropoutfloat, default=0.2

Dropout probability.

mlp_num_layersint, default=2

Number of layers in the MLP.

mlp_activationcallable or None, optional

Activation function in the MLP.

mlp_dropoutfloat, optional

Dropout probability in the MLP.

mlp_normstr or None, optional

Type of layer normalization in the MLP.

**kwargsoptional

Additional arguments for the layer modules.

Methods

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(x_0, incidence_1)

Forward computation.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

reset_parameters()

Reset learnable parameters.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

References

[1]

Chien, Pan, Peng and Milenkovic. You are AllSet: a multiset function framework for hypergraph neural networks. ICLR 2022. https://arxiv.org/abs/2106.13264

forward(x_0, incidence_1)[source]#

Forward computation.

Vertex to edge:

\[\begin{split}\begin{align*} &🟧 \quad m_{\rightarrow z}^{(\rightarrow 1)} = AGG_{y \in \mathcal{B}(z)} (h_y^{t, (0)}, h_z^{t,(1)}) \\ &🟦 \quad h_z^{t+1,(1)} = \sigma(m_{\rightarrow z}^{(\rightarrow 1)}) \end{align*}\end{split}\]

Edge to vertex:

\[\begin{split}\begin{align*} &🟧 \quad m_{\rightarrow x}^{(\rightarrow 0)} = AGG_{z \in \mathcal{C}(x)} (h_z^{t+1,(1)}, h_x^{t,(0)}) \\ &🟦 \quad h_x^{t+1,(0)} = \sigma(m_{\rightarrow x}^{(\rightarrow 0)}) \end{align*}\end{split}\]
Parameters:
x_0torch.Tensor, shape = (n_nodes, channels)

Node input features.

incidence_1torch.sparse, shape = (n_nodes, n_hyperedges)

Incidence matrix \(B_1\) mapping hyperedges to nodes.

Returns:
x_0torch.Tensor

Output node features.

x_1torch.Tensor

Output hyperedge features.

reset_parameters() None[source]#

Reset learnable parameters.

class topomodelx.nn.hypergraph.allset_layer.MLP(in_channels, hidden_channels, norm_layer=None, activation_layer=None, dropout: float = 0.0, inplace: bool | None = None, bias: bool = False)[source]#

MLP Module.

A module for a multi-layer perceptron (MLP).

Parameters:
in_channelsint

Dimension of the input features.

hidden_channelslist of int

List of dimensions of the hidden features.

norm_layercallable or None, optional

Type of layer normalization.

activation_layercallable or None, optional

Type of activation function.

dropoutfloat, default=0.0

Dropout probability.

inplacebool, default=False

Whether to do the operation in-place.

biasbool, default=False

Whether to add bias.

Methods

add_module(name, module)

Adds a child module to the current module.

append(module)

Appends a given module to the end.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(input)

Defines the computation performed at every call.

get_buffer(target)

Returns the buffer given by target if it exists, otherwise throws an error.

get_extra_state()

Returns any extra state to include in the module's state_dict.

get_parameter(target)

Returns the parameter given by target if it exists, otherwise throws an error.

get_submodule(target)

Returns the submodule given by target if it exists, otherwise throws an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Moves all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_backward_hook(hook)

Registers a backward hook on the module.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Registers a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Registers a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Registers a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Registers a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Registers a post hook to be run after module's load_state_dict is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Adds a parameter to the module.

register_state_dict_pre_hook(hook)

These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

This function is called from load_state_dict() to handle any extra state found within the state_dict.

share_memory()

See torch.Tensor.share_memory_()

state_dict(*args[, destination, prefix, ...])

Returns a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

to_empty(*, device)

Moves the parameters and buffers to the specified device without copying storage.

train([mode])

Sets the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Moves all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

__call__

extend

insert

pop