Simplicial 2-complex convolutional neural network.
- class topomodelx.nn.simplicial.scconv_layer.SCConvLayer(node_channels, edge_channels, face_channels)[source]#
Layer of a Simplicial 2-complex convolutional neural network (SCConv).
Implementation of the SCConv layer proposed in [1].
Methods
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x_0, x_1, x_2, incidence_1, ...)get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
Reset parameters.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
References
[1]Bunch, You, Fung and Singh. Simplicial 2-complex convolutional neural nets. TDA and beyond, NeurIPS 2020 workshop. https://openreview.net/forum?id=TLbnsKrt6J-
[2]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
[3]Papillon, Sanborn, Hajij, Miolane. Architectures of topological deep learning: a survey on topological neural networks (2023). https://arxiv.org/abs/2304.10031.
- forward(x_0, x_1, x_2, incidence_1, incidence_1_norm, incidence_2, incidence_2_norm, adjacency_up_0_norm, adjacency_up_1_norm, adjacency_down_1_norm, adjacency_down_2_norm)[source]#
Forward pass (see [2]_ and [3]_).
\[\begin{split}\begin{align*} &🟥 \quad m_{y\rightarrow x}^{(0\rightarrow 0)} = ({\tilde{A}_{\uparrow,0}})_{xy} \cdot h_y^{t,(0)} \cdot \Theta^{t,(0\rightarrow0)}\\ &🟥 \quad m^{(1\rightarrow0)}_{y\rightarrow x} = (B_1)_{xy} \cdot h_y^{t,(0)} \cdot \Theta^{t,(1\rightarrow 0)}\\ &🟥 \quad m^{(0 \rightarrow 1)}_{y \rightarrow x} = (\tilde B_1)_{xy} \cdot h_y^{t,(0)} \cdot \Theta^{t,(0 \rightarrow1)}\\ &🟥 \quad m^{(1\rightarrow1)}_{y\rightarrow x} = ({\tilde{A}_{\downarrow,1}} + {\tilde{A}_{\uparrow,1}})_{xy} \cdot h_y^{t,(1)} \cdot \Theta^{t,(1\rightarrow1)}\\ &🟥 \quad m^{(2\rightarrow1)}_{y \rightarrow x} = (B_2)_{xy} \cdot h_y^{t,(2)} \cdot \Theta^{t,(2 \rightarrow1)}\\ &🟥 \quad m^{(1 \rightarrow 2)}_{y \rightarrow x} = (\tilde B_2)_{xy} \cdot h_y^{t,(1)} \cdot \Theta^{t,(1 \rightarrow 2)}\\ &🟥 \quad m^{(2 \rightarrow 2)}_{y \rightarrow x} = ({\tilde{A}_{\downarrow,2}})\_{xy} \cdot h_y^{t,(2)} \cdot \Theta^{t,(2 \rightarrow 2)}\\ &🟧 \quad m_x^{(0 \rightarrow 0)} = \sum_{y \in \mathcal{L}_\uparrow(x)} m_{y \rightarrow x}^{(0 \rightarrow 0)}\\ &🟧 \quad m_x^{(1 \rightarrow 0)} = \sum_{y \in \mathcal{C}(x)} m_{y \rightarrow x}^{(1 \rightarrow 0)}\\ &🟧 \quad m_x^{(0 \rightarrow 1)} = \sum_{y \in \mathcal{B}(x)} m_{y \rightarrow x}^{(0 \rightarrow 1)}\\ &🟧 \quad m_x^{(1 \rightarrow 1)} = \sum_{y \in (\mathcal{L}_\uparrow(x) + \mathcal{L}_\downarrow(x))} m_{y \rightarrow x}^{(1 \rightarrow 1)}\\ &🟧 \quad m_x^{(2 \rightarrow 1)} = \sum_{y \in \mathcal{C}(x)} m_{y \rightarrow x}^{(2 \rightarrow 1)}\\ &🟧 \quad m_x^{(1 \rightarrow 2)} = \sum_{y \in \mathcal{B}(x)} m_{y \rightarrow x}^{(1 \rightarrow 2)}\\ &🟧 \quad m_x^{(2 \rightarrow 2)} = \sum_{y \in \mathcal{L}_\downarrow(x)} m_{y \rightarrow x}^{(2 \rightarrow 2)}\\ &🟩 \quad m_x^{(0)} = m_x^{(1\rightarrow0)}+ m_x^{(0\rightarrow0)}\\ &🟩 \quad m_x^{(1)} = m_x^{(2\rightarrow1)}+ m_x^{(1\rightarrow1)}\\ &🟦 \quad h^{t+1, (0)}_x = \sigma(m_x^{(0)})\\ &🟦 \quad h^{t+1, (1)}_x = \sigma(m_x^{(1)})\\ &🟦 \quad h^{t+1, (2)}_x = \sigma(m_x^{(2)}) \end{align*}\end{split}\]- Parameters:
- x_0: torch.Tensor, shape = (n_nodes, node_channels)
Input features on the nodes of the simplicial complex.
- x_1: torch.Tensor, shape = (n_edges, edge_channels)
Input features on the edges of the simplicial complex.
- x_2: torch.Tensor, shape = (n_faces, face_channels)
Input features on the faces of the simplicial complex.
- incidence_1: torch.Tensor, shape = (n_faces, channels)
Incidence matrix of rank 1 \(B_1\).
- incidence_1_norm: torch.Tensor
Normalized incidence matrix of rank 1 \(B^{~}_1\).
- incidence_2: torch.Tensor
Incidence matrix of rank 2 \(B_2\).
- incidence_2_norm: torch.Tensor
Normalized incidence matrix of rank 2 \(B^{~}_2\).
- adjacency_up_0_norm: torch.Tensor
Normalized upper adjacency matrix of rank 0.
- adjacency_up_1_norm: torch.Tensor
Normalized upper adjacency matrix of rank 1.
- adjacency_down_1_norm: torch.Tensor
Normalized down adjacency matrix of rank 1.
- adjacency_down_2_norm: torch.Tensor
Normalized down adjacency matrix of rank 2.
- Returns:
- tuple of tensors, shape = (x0_out, x1_out, x2_out)
Output features on the nodes of the simplicial complex.
Notes
For normalization of incidence matrices you may use the helper functions here: pyt-team/TopoModelX