Simplicial Complex Convolutional Network (SCCN) Layer.
- class topomodelx.nn.simplicial.sccn_layer.SCCNLayer(channels, max_rank, aggr_func: Literal['mean', 'sum'] = 'sum', update_func: Literal['relu', 'sigmoid', 'tanh'] | None = 'sigmoid')[source]#
Simplicial Complex Convolutional Network (SCCN) layer by [1].
This implementation applies to simplicial complexes of any rank.
This layer corresponds to the leftmost tensor diagram labeled Yang22c in Figure 11 of [3].
- Parameters:
- channelsint
Dimension of features on each simplicial cell.
- max_rankint
Maximum rank of the cells in the simplicial complex.
- aggr_func{“mean”, “sum”}, default=”sum”
The function to be used for aggregation.
- update_func{“relu”, “sigmoid”, “tanh”, None}, default=”sigmoid”
The activation function.
Methods
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(features, incidences, adjacencies)Forward pass.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module's state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
register_state_dict_pre_hook(hook)These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
Reset learnable parameters.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()state_dict(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
__call__
See also
topomodelx.nn.simplicial.scn2_layer.SCN2LayerSCN layer proposed in [1] for simplicial complexes of rank 2. The difference between SCCN and SCN is that: - SCN passes messages between cells of the same rank, - SCCN passes messages between cells of the same ranks, one rank above and one rank below.
References
[1] (1,2)Yang, Sala, Bogdan. Efficient representation learning for higher-order data with simplicial complexes (2022). https://proceedings.mlr.press/v198/yang22a.html
[2]Papillon, Sanborn, Hajij, Miolane. Equations of topological neural networks (2023). awesome-tnns/awesome-tnns
[3]Papillon, Sanborn, Hajij, Miolane. Architectures of topological deep learning: a survey on topological neural networks (2023). https://arxiv.org/abs/2304.10031.
- forward(features, incidences, adjacencies)[source]#
Forward pass.
The forward pass was initially proposed in [1]_. Its equations are given in [2]_ and graphically illustrated in [3]_.
The incidence and adjacency matrices passed into this layer can be normalized as described in [1]_ or unnormalized.
\[\begin{split}\begin{align*} &🟥 \quad m_{{y \rightarrow x}}^{(r \rightarrow r)} = (H_{r})_{xy} \cdot h^{t,(r)}_y \cdot \Theta^{t,(r\to r)} \\ &🟥 \quad m_{{y \rightarrow x}}^{(r-1 \rightarrow r)} = (B_{r}^T)_{xy} \cdot h^{t,(r-1)}_y \cdot \Theta^{t,(r-1\to r)} \\ &🟥 \quad m_{{y \rightarrow x}}^{(r+1 \rightarrow r)} = (B_{r+1})_{xy} \cdot h^{t,(r+1)}_y \cdot \Theta^{t,(r+1\to r)} \\ &🟧 \quad m_{x}^{(r \rightarrow r)} = \sum_{y \in \mathcal{L}_\downarrow(x)\bigcup \mathcal{L}_\uparrow(x)} m_{y \rightarrow x}^{(r \rightarrow r)} \\ &🟧 \quad m_{x}^{(r-1 \rightarrow r)} = \sum_{y \in \mathcal{B}(x)} m_{y \rightarrow x}^{(r-1 \rightarrow r)} \\ &🟧 \quad m_{x}^{(r+1 \rightarrow r)} = \sum_{y \in \mathcal{C}(x)} m_{y \rightarrow x}^{(r+1 \rightarrow r)} \\ &🟩 \quad m_x^{(r)} = m_x^{(r \rightarrow r)} + m_x^{(r-1 \rightarrow r)} + m_x^{(r+1 \rightarrow r)} \\ &🟦 \quad h_x^{t+1,(r)} = \sigma(m_x^{(r)}) \end{align*}\end{split}\]- Parameters:
- featuresdict[int, torch.Tensor], length=max_rank+1, shape = (n_rank_r_cells, channels)
Input features on the cells of the simplicial complex.
- incidencesdict[int, torch.sparse], length=max_rank, shape = (n_rank_r_minus_1_cells, n_rank_r_cells)
Incidence matrices \(B_r\) mapping r-cells to (r-1)-cells.
- adjacenciesdict[int, torch.sparse], length=max_rank, shape = (n_rank_r_cells, n_rank_r_cells)
Adjacency matrices \(H_r\) mapping cells to cells via lower and upper cells.
- Returns:
- dict[int, torch.Tensor], length=max_rank+1, shape = (n_rank_r_cells, channels)
Output features on the cells of the simplicial complex.